
J .  Fluid Mech. (1971), vol. 48, part 3, pp.  423-428 

Printed in Great Britain 

423 

MHD flow in an annular channel; 
theory and experiment 

By J. A. BAYLIS 
Central Electricity Research Laboratories, 

Leatherhead, Surrey 

A N D  J. C. R. HUNT 
Department of Applied Mathematics and Theoretical Physics, Cambridge 

(Received 5 April 1967 and in revised form 7 April 1971) 

The theory of Hunt & Stewartson (1965) for MHD flow in a rectangular duct 
with conducting walls parallel and non-conducting walls perpendicular to the 
magnetic field is applied to the problem of electrically driven MHD flow in a 
rectangular annulus. It is assumed that the Hartmann number M is sufficiently 
great for secondary flow effects to be negligible. The experiment described here 
satisfied the conditions of the theory and thus provides a sensitive experimental 
check on Hunt & Stewartson’s theory. The theory is found to agree with the 
experiments to within the accuracy of the asymptotic theory. 

1. Introduction 
There have not been many MHD experiments to measure laminar flow in 

ducts, particularly where the walls are electrically conducting. Such walls are to 
be found in most practical devices involving MHD flows in order that electric 
currents can pass between the walls and the fluid. An idealized MHD generator/ 
pump of this kind was analyzed by Hunt & Stewartson (1965), (H & S), the main 
feature of the theory being the calculation of the flow in the boundary layers on 
the electrodes. Thus the theory can only properly be tested by an experimental 
flow in which the effects of the boundary layer contribute significantly to the 
total flow rate. In  the experiments described here, where a reasonable comparison 
is possible, the flow was driven round an annulus of square cross-section by an 
imposed radial current perpendicular to an axial magnetic field. On account of 
the curvature of the duct some alterations are necessary to the theory of H & S, 
which are given in 9 2, 

For recent reviews of other experiments where comparison with theory has 
been made, see Branover & Tsinober (1970) or Hunt & Shercliff (1971). 

2. Theory 
Consider the flow in a rectangular annulus shown in figure 1. The radii of 

the two concentric walls are rl ,r2 and the height is 2a, the walls parallel and 
perpendicular to the field being perfectly conducting and non-conducting 
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respectively. The fluid is incompressible with conductivity (T and viscosity 7. 
A current I flowing from one electrode to the other drives the fluid. If we non- 
dimensionalize in terms of I ,  the equations for the velocity Ve ,  the induced 
magnetic field h,, and the potential 4, following Hunt & Williams (1968), are 

Hartman 
layers of 
thickness O(M-’) 

FIGURE 1. Sketch of an annulus with an axial magnetic field, showing 
the boundary layers which exist when M 1. 

In  these equations we have assumed that radial and axial velocities are 
negligible, so that the only components of velocity are azimuthal and the only 
components of current are radial and axial. To find how large M must be for this 
assumption to be valid consider the equation for azimuthal vorticity in the 
Hartmann boundary layer. Since v, B v, in this region we find 

-pa(vz/r)/az = - (~B;av,/az + 7 a3vT/a23, 

whence it follows that 

wherep is the fluid density and Vec is the core velocity. Thence we can estimate the 
size of the inertial terms which we have neglected from (2.1). A typical term is 
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whereas the viscous term on the right-hand side is 

7 a2v,/az2 = O [ ~ V ,  M2/a2]. 

Thus the inertial term is negligible if 

.g 1, 
a2 Re2 - x - < l  or 
R2 M 4  M2 

where K = (2a /R) tRe  and R e  = 2avOcp"/7. This condition is less stringent than 
(K/M2)2 < 1 deduced by Baylis (1966),  which was not correct. A slightly more 
stringent condition, (K /M2)2  M3 < 1, must be satisfied if secondary flow effeots 
are to be negligible in the boundary layers a t  p = pl, p2. 

Boundary conditions 

On both the walls at  5 = f 1, and p = p1,p2, the condition on the current is that 

(2.5) j, = a(ph)/ap = 0. 

Thence the conditions on 2, and h become 

a t  

at  

Solution 

We use the method of H & S in which the flow is divided up into regions. By 
adding and subtracting (2.1) and (2.2) we obtain the combined equations in 
v and h, 

Away from the side walls at  p = pl, p2, we need only consider the core flow and the 
Hartmann (or primary) boundary layers. Since v f h is constant across the layer 
at  g = 1, and v - h is constant at 6 = - 1, it follows that in the core 

v+h = I / p ,  V - h  = l / p ,  

where v = V ,  = l/p, h = he = 0. (2.8) 

Thus the velocity in the core decreases radially outwards, while all the current 
is contained in the Hartmann layers of thickness O(M-l), as shown in figure 5 (b)  
ofH&S.  

Now consider the boundary layers on the side walls, referred to as region ( c )  by 
H & S. The thickness of these layers is O(M-8). Taking the wall at  p = pl, we write 

Then if X = (v, + hJ, X has to satisfy 

azx /apz+  Maxlag  = - (i/p) axlap + x/p- a2xiap. (2.9) 

Now in (c) a/+ = O(MB), so that if we put the right-hand side of (2.9) equal to 
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zero we are ignoring terms of O(aMi/R) ,  O(a2/R2) and O( 1) compared with terms 
of order M .  Then, to the same order, the condition (2.6) on h becomes 

ah,& = 0 on p = pl. 

Using the symmetry of v and h it follows that the boundary conditions on X are 

(2.10) 

and, because of the inner Hartmann layer, region (d), at 

[ =  1, x = 0. (2.11) 

The equation (2.9) with zero right-hand side together with (2.10) and (2.11) con- 
stitutes the same problem as that solved by H & s. Using their result it follows 
that 

( - t)! 24 
v,apag = where p = (p  - p l )  Mf. (2.12) 

(&)! Mg 

For comparison with experiment we are interested in the overall relation 
between I and 

Integrating the core flow, (2.8), and using (2.12) we find 

the undetermined term of O(M-l) being produced by the neglected term on the 
right-hand side of (2.9). Q cannot easily be measured directly whereas the fall in 
potential, A$, between the two walls at  r = r l ,  r2 can. To find Q we integrate (2.3) 
across the duct 

Aq5 = B0Q/2a - I l n  (r2/~1)/(47rafl). (2.13) 

3. Experimental results 
The experimental apparatus is described in detail by Baylis (1966), but there 

are two aspects of the apparatus that must be considered when comparing the 
experimental results with the theory. The first is that the theory assumes no 
contact resistance between the fluid and the conducting walls, but experimentally 
some contact resistance does exist between copper and mercury. There seems to 
be disagreement how important this is in MHD experiments. Glaberson, Donnelly 
& Roberts (1968) suggested that it was too large to permit any accurate duct flow 
experiments with conducting walls, whereas we found that with a good amalgam 
layer on the copper this resistance is of the order of 10-lOohm m2 and is negligible 
compared with the resistance of the flow when M 9 1. A similar order of contact 
resistance between mercury and copper was also found by Hunt & Malcolm (1968) 
and Alty (1966). The second point concerns the resistance of the walls, for unless 
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the conductance of the side walls is very much greater than that of the side wall 
boundary layers, i.e. 

where uw and t are the conductivity and thickness of the walls, our assumption 
that these walls are highly conducting is wrong. This condition (3.1) was well 
satisfied for M B 16 when 

Mbwt/ (aa)  9 1, (3.1) 

M)a,t/(fTa) > 200. 

In  analyzing the flow in the secondary flow regime Baylis (1971) uses the 
variable 

F = fRe = 21Boa2/[~(R/u)~Q]. 

I n  looking at  the results when there is no secondary flow it is more convenient to  
tabulate P = P/2M a.s a function of R/a and M. Then from our theory, for a 
square annular duct 

0*956(2Ra) - M-1 P = l/[;ln (-) R + a  (1 - 
R-a  Mi(R2-a2)1n [(R+a)/(R-a)] 

+ O((a/R)M-'))] 

In  table 1 we compare the experimental values for P with the theoretical. 

M 
16.31 
16.37 
16.74 
32.37 
32.86 
64.93 
65-8 

129.8 

Ria 
34 
17 
8 

17 
8 
8 
3.5 
3.5 

pew 
1.4f0 .1  
1.5 f 0.1 
1.4f 0.1 

1.19 f 0.04 
1.23 0.04 
1.12 f 0.03 
1.12 f 0-03 

1.045 Ifr 0.02 

TABLE 1 

ptheors. 

1.41 
1.41 
1.41 
1-25 
1.24 
1-15 
1.12 
1.062 

Pexp was obtained by averaging the values of P in the range of M and K where P 
did not vary with KIM2. See figure 3 of Baylis (1  97 1).  Allowance was made for the 
temperature variation of viscosity in the calculation of M and P. Another factor 
that had to be considered was the uncertainty in the duct dimension a caused by 
the growth of the amalgam layers on the copper surfaces. Typically these layers 
thickened by 25pm during an experiment, which implies a maximum uncertainty 
in a of about 1.5 yo. 

4. Discussion 
The comparison between the theoretical and the experimental results is good, 

the small systematic error (i.e. Ptheory > Pexp) being of the order of the terms not 
calculated in the theoretical expression. The agreement provides the f i s t  experi- 
mental check on the theory of H & S for the side wall boundary layer. The check 
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is a good one because the boundary-layer flux deficit is 25 % of the total flux in 
some of these cases. Note that the theory of H & S is only valid when M 9 1, but 
in fact a comparison with the numerical calculations of Tani (1962) shows that the 
asymptotic theory is accurate to 2 yo for M as low as 15. Thus the reasonable 
agreement with experiment at M N 16 should not be surprising. 
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